High Throughput Screening for Small Molecule Therapy for Gaucher Disease Using Patient Tissue as the Source of Mutant Glucocerebrosidase

نویسندگان

  • Ehud Goldin
  • Wei Zheng
  • Omid Motabar
  • Noel Southall
  • Jae Hyuk Choi
  • Juan Marugan
  • Christopher P. Austin
  • Ellen Sidransky
چکیده

Gaucher disease (GD), the most common lysosomal storage disorder, results from the inherited deficiency of the lysosomal enzyme glucocerebrosidase (GCase). Previously, wildtype GCase was used for high throughput screening (HTS) of large collections of compounds to identify small molecule chaperones that could be developed as new therapies for GD. However, the compounds identified from HTS usually showed reduced potency later in confirmatory cell-based assays. An alternate strategy is to perform HTS on mutant enzyme to identify different lead compounds, including those enhancing mutant enzyme activities. We developed a new screening assay using enzyme extract prepared from the spleen of a patient with Gaucher disease with genotype N370S/N370S. In tissue extracts, GCase is in a more native physiological environment, and is present with the native activator saposin C and other potential cofactors. Using this assay, we screened a library of 250,000 compounds and identified novel modulators of mutant GCase including 14 new lead inhibitors and 30 lead activators. The activities of some of the primary hits were confirmed in subsequent cell-based assays using patient-derived fibroblasts. These results suggest that primary screening assays using enzyme extracted from tissues is an alternative approach to identify high quality, physiologically relevant lead compounds for drug development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three classes of glucocerebrosidase inhibitors identified by quantitative high-throughput screening are chaperone leads for Gaucher disease.

Gaucher disease is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene. Missense mutations result in reduced enzyme activity that may be due to misfolding, raising the possibility of small-molecule chaperone correction of the defect. Screening large compound libraries by quantitative high-throughput screening (qHTS) provides comprehensive informa...

متن کامل

P-111: An Attempt to Facilitate the Production of Transgenic Mouse As A Model for Gene Therapy of Gaucher Disease

Background: Gaucher disease is an autosomal recessive inherited lysosomal storage disorder that affects many of the body's organs and tissues by defective function of the catabolic enzyme β-glucocerebrosidase. Gene therapy is one of the efficient ways for treatment of this disease. Due to the lack of appropriate animal models, in the field of gene therapy little progress has been done.Mate...

متن کامل

A New Glucocerebrosidase Chaperone Reduces α-Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism.

UNLABELLED Among the known genetic risk factors for Parkinson disease, mutations in GBA1, the gene responsible for the lysosomal disorder Gaucher disease, are the most common. This genetic link has directed attention to the role of the lysosome in the pathogenesis of parkinsonism. To study how glucocerebrosidase impacts parkinsonism and to evaluate new therapeutics, we generated induced human p...

متن کامل

Gaucher disease: Progress and ongoing challenges.

Over the past decades, tremendous progress has been made in the field of Gaucher disease, the inherited deficiency of the lysosomal enzyme glucocerebrosidase. Many of the colossal achievements took place during the course of the sixty-year tenure of Dr. Roscoe Brady at the National Institutes of Health. These include the recognition of the enzymatic defect involved, the isolation and characteri...

متن کامل

Comparative study on glucocerebrosidase in spleens from patients with Gaucher disease.

In Gaucher disease (glucosylceramide lipidosis), deficiency of glucocerebrosidase causes pathological storage of glucosylceramide, particularly in the spleen. A comparative biochemical and immunological analysis has therefore been made of glucocerebrosidase in spleens from normal subjects (n = 4) and from Gaucher disease patients with non-neuronopathic (n = 5) and neuronopathic (n = 5) phenotyp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012